Summation of Formal Solutions of a Class of Linear Diierence Equations

نویسندگان

  • B L J Braaksma
  • B F Faber
  • G K Immink
چکیده

We consider diierence equations y(s + 1) = A(s)y(s), where A(s) is an n n-matrix meromorphic in a neighborhood of 1 with det A(s) 6 6 0. In general, the formal fundamental solutions of this equation involve gamma-functions which give rise to the critical variable s log s and a level 1 +. We show that, under a mild condition, formal fundamental matrices of the equation can be summed uniquely to analytic fundamental matrices represented asymptotically by the formal fundamental solution in appropriate domains. The method of proof is analogous to a method used to prove multi-summability of formal solutions of ODE's. Starting from analytic lifts of the formal fundamental matrix in half planes, we construct a sequence of increasingly precise quasi-functions, each of which is determined uniquely by its predecessor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Q-hypergeometric Solutions of Q-diierence Equations

We present algorithm qHyper for nding all solutions y(x) of a linear homogeneous q-diierence equation such that y(qx) = r(x)y(x) where r(x) is a rational function of x. Applications include construction of basic hypergeometric series solutions, and deenite q-hypergeometric summation in closed form.

متن کامل

On Borel summation and Stokes phenomena for rank one nonlinear systems of ODE’s

In this paper we study analytic (linear or) nonlinear systems of ordinary differential equations, at an irregular singularity of rank one, under nonresonance conditions. It is shown that the formal asymptotic exponential series solutions (transseries solutions: countable linear combinations of formal power series multiplied by small exponentials) are Borel summable in a generalized sense along ...

متن کامل

Multi-level Gevrey solutions of singularly perturbed linear partial differential equations

We study the asymptotic behavior of the solutions related to a family of singularly perturbed linear partial differential equations in the complex domain. The analytic solutions obtained by means of a BorelLaplace summation procedure are represented by a formal power series in the perturbation parameter. Indeed, the geometry of the problem gives rise to a decomposition of the formal and analyti...

متن کامل

Summation of Formal Solutions of a Class of Linear Difference Equations

We consider difference equations y(s+1) = A(s)y(s), where A(s) is an n × n-matrix meromorphic in a neighborhood of ∞ with detA(s) ≡ 0. In general, the formal fundamental solutions of this equation involve gamma-functions which give rise to the critical variable s log s and a level 1. We show that, under a mild condition, formal fundamental matrices of the equation can be summed uniquely to anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998